NEW OPPORTUNITIES IN CENTRIFUGAL POWDER COMPACTION

Hamburg, 11.10.2016,

S. Riecker, B. Kieback, T. Studnitzky, O. Andersen

Motivation

Factors that influence sinter components quality:

- Heat treatment, choice of material, particle packing in green state
- Requirements for high quality sinter parts
 - High green density
 - High coordination number (particle)
 - High Packing homogeneity of green part
- Real process: inhomogeneities in green state e.
 - Segregation effects in MIM
 - Density gradients in pressed parts

Density field in cylindric pressed green compact

[1] Schatt, Werner, Wieters, Kieback, "Pulvermetallurgie: Technologien und Werkstoffe: Technologie und Werkstoffe"

Manufacturing process using sedimentation

- Which manufacturing process can meet the requirements for homogenous components
 - Slurry based manufacturing techniques suitable due to low friction
 - \rightarrow Sedimentation of particles
- Example: High-speed centrifugal compaction process (HCP)
 - Batchweise sedimentation small charges
 - High acceleration of 10.000 100.000 x g
 - \rightarrow Relatively high green densities (0.55 0.67) and high sintered densities achievable
 - \rightarrow Segregation effects particle size > also used for producing FGM

Suzuki, 2006, Development of High-Speed Centrifugal Compaction Process of Alumina

IFAM

Manufacturing process using sedimentation

- Modified centrifugal sedimentation concept
 - No segregation effect by having continuous suspension (particle) flow
 - Fast sedimentation due to high forces and low particle volume content
- Advantages of sedimentation process remain:
 - Homogenous forces
 - Reduced particle friction
 - Low binder content
 - Bubbles are segregated

IFAM

Branch Lab Dresden

- Filling of centrifuge basket with solvent
- Rotation of centrifuge
 - Due to centrifugal forces the fluid gets pushed against cenrifuge basket walls
 - Remaining free baskret center

IFAM

Branch Lab Dresden

- Nozzle is brought into basket
- Spraying of powder suspension
- Particles sediment into container
- Drainage of particle-free solvent on top

Preparation of centrifuge

> Sedimentation

Dewatering

Binderinfiltration

Drying

Centrifugal sedimentation process

Green part fabrication

Fraunhofer

Dewatering of centrifuge basket

IFAM Branch Lab Dresden

Binder infiltration

Preparation of centrifuge

Sedimentation

Dewatering

Binderinfiltration

Drying

Centrifugal sedimentation process

Green part fabrication

Sedimentation experiments

- Process parameters
 - Acceleration 360 x g
 - Particle mass flow 50 500 g/min
 - Particle volume loading of spray suspension 4 – 6 vol%
- Model powder: stainles steel powder 316L
 - Spherical particles
 - D₅₀ = 6,9 μm, D₉₀ = 11,3 μm
 - Few bigger particles >15 µm with irregular shape

Analysis of sediments

- Cross sections of sediments show possible defects:
 - Layering in particle packing
 - Thin wall effect (1 2) mm
 - Layering due to processing parameters
 - Process-know-how: defects can be minimized
- Green density analysis
 - Preparation: cross section polishing CSP
 - Confocal laser scanning microscopy (CLSM)

Particle packing

- Average green density of 66 %
- Uniform packing

IFAM Branch Lab Dresden

Analysis of sediments

Sintering result: homogenous with high density

Sintering step 1000°C, 5min

Sintering step 1250°C, 5min

Analysis of sediments

- Homogeneity of sediments
 - Homogenous porosity in zdirection
 - No significant segregation due to particle size distribution

Fraunhofer

IFAM

Branch Lab Dresden

Analysis of sediments – large particles

- Few large particles can lead to inhomogeneity and low density
- Voids in the "shadow" of large particles
- Defect reproduced in Packing simulation
 - "Drop and Roll" algorithm
 - Input: measured particle size distribution
 - Systematic defect for sedimentation?
 > True for low particle loadings
- Voids can be avoided using higher particle mass flow > higher sedimentation rate

Large particles within sediment

Packing simulation

Analysis of sediments – large particles

- Few large particles can lead to inhomogeneity and low density
- Voids in the "shadow" of large particles
- Defect reproduced in Packing simulation
 - "Drop and Roll" algorithm
 - Input: measured particle size distribution
 - Systematic defect for sedimentation?
 > True for low particle loadings
- Voids can be avoided using higher particle mass flow > higher sedimentation rate

Large particles within sediment

Packing simulation

Shaping by green machining

- Sediments semi-finished product (ring geometry)
- Shaping step necessary
 - Green machining

- Binder-infiltration of sediment under vacuum
- Green machining
 - CNC-machining, drilling, turning
 - Debinding, sintering

Green machining – Binder content

- Binder solution development:
 - Viscosity, wetting behaviour, mech. strength
- Low binder content of ~4 vol%
 - Thermogravimetric analysis:

Green machining – Green strength

- Compressive strength ~11 MPa
- Max. compressive strain of ~7 %
- Literature values: 18 – 150 MPa

Green machining - Experiments

- Green machining of sediment samples:
 - Process parameters
 - Tool: HSS 12 mm, 2 mm
 - < 1800 rpm</p>
 - 125-160 mm/min feed speed
- Geometry
 - Face milling > cuboid
 - Line profile, line width 100-300 µm
 - Aspect ratio h/w = 6
 - 2 mm holes

Green machining - Experiments

- Green machining of sediment samples:
 - Process parameters
 - Tool: HSS 12 mm, 2 mm
 - < 1800 rpm</p>
 - 125-160 mm/min feed speed
- Geometry
 - Face milling > cuboid
 - Line profile, line width 100-300 µm
 - Aspect ratio h/w = 6
 - 2 mm holes

Green machining - Experiments

- CNC-Green machining of sediment samples:
 - Process parameters
 - Tools: 0.2 mm, 5 mm
 - 25.000 40.000 rpm
 - 120 160 mm/min feed
- Generic structures
 - Face milling
 - Line structures dist. 0.5 1 mm
 - Text and wave structures
 - Cylinders und Coboids
 D,a = 0.5, 1, 1.5 mm
 d = 1 3,5 mm

Summary and Outlook

- Centrifugal sedimentation as manufacturing process for machinable green parts tested
- Fabrication of homogenous green parts possible no segregation due to particle size and good sintering dynamic
- Large particle defects can be avoided also bimodal powders can be used
- Green machining with minimum resolution of ~ 200 µm at high aspect ratio
- Good machinability with very little defects

Next steps:

- Production of gradients possible by using multiple dispense systems
- Repeatability for sediment results
- Optimization of milling strategies and evaluation of processing guidelines

Thank you for your attention !

Dipl.-Ing. Sebastian Riecker Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Branch Lab Dresden Winterbergstraße 28 | 01277 Dresden | Germany Phone +49 351 2537-429

Mail sebastian.riecker@ifam-dd.fraunhofer.de

